FedHome
CtrlK
  • 👋Welcome to FedHome
  • 🥵ResearchHub
    • 🍓Web
      • WWW
      • KDD
      • SIGIR
    • 🍎Security
      • USENIX Security
      • S&P
      • CCS
      • NDSS
      • ESORICS
      • ACSAC
    • 🍐Software
      • ICSE
      • ASE
      • FSE
    • 🍊System
      • OSDI
      • SOSP
      • EuroSys
      • USENIX ATC
      • MLSys
      • DAC
      • HPCA
      • MICRO
      • SC
      • SoCC
      • RTSS
      • ISCA
    • 🍋Database
      • SIGMOD
      • VLDB
      • ICDE
    • 🍌Network
      • NSDI
      • INFOCOM
    • 🍉ML
      • ICML
      • ICLR
      • AISTATS
      • NeurlPS
    • 🫐Mobile
      • MobiSys
      • MobiCom
      • SenSys
      • UbiComp
    • 🍑AI
      • AAAI
      • IJCAI
Powered by GitBook
On this page
  • 2024
  • 2023
  1. 🥵ResearchHub
  2. 🍋Database

ICDE

2024

  • Clients Help Clients: Alternating Collaboration for Semi-Supervised Federated Learning.

  • Label Noise Correction for Federated Learning: A Secure, Efficient and Reliable Realization.

  • HeteFedRec: Federated Recommender Systems with Model Heterogeneity.

  • FedCross: Towards Accurate Federated Learning via Multi-Model Cross-Aggregation.

  • RobFL: Robust Federated Learning via Feature Center Separation and Malicious Center Detection.

  • Feed: Towards Personalization-Effective Federated Learning.

  • Preventing the Popular Item Embedding Based Attack in Federated Recommendations.

  • Semi-Asynchronous Online Federated Crowdsourcing.

  • AdaFGL: A New Paradigm for Federated Node Classification with Topology Heterogeneity.

2023

  • FedKNOW: Federated Continual Learning with Signature Task Knowledge Integration at Edge.

  • Federated IoT Interaction Vulnerability Analysis.

  • Dynamic Activation of Clients and Parameters for Federated Learning over Heterogeneous Graphs.

  • Lumos: Heterogeneity-aware Federated Graph Learning over Decentralized Devices.

  • Distribution-Regularized Federated Learning on Non-IID Data.

  • Enhancing Decentralized Federated Learning for Non-IID Data on Heterogenous Devices.

  • Fed-SC: One-Shot Federated Subspace Clustering over High-Dimensional Data.

PreviousVLDBNextNetwork

Last updated 1 year ago