FedHome
CtrlK
  • 👋Welcome to FedHome
  • 🥵ResearchHub
    • 🍓Web
      • WWW
      • KDD
      • SIGIR
    • 🍎Security
      • USENIX Security
      • S&P
      • CCS
      • NDSS
      • ESORICS
      • ACSAC
    • 🍐Software
      • ICSE
      • ASE
      • FSE
    • 🍊System
      • OSDI
      • SOSP
      • EuroSys
      • USENIX ATC
      • MLSys
      • DAC
      • HPCA
      • MICRO
      • SC
      • SoCC
      • RTSS
      • ISCA
    • 🍋Database
      • SIGMOD
      • VLDB
      • ICDE
    • 🍌Network
      • NSDI
      • INFOCOM
    • 🍉ML
      • ICML
      • ICLR
      • AISTATS
      • NeurlPS
    • 🫐Mobile
      • MobiSys
      • MobiCom
      • SenSys
      • UbiComp
    • 🍑AI
      • AAAI
      • IJCAI
Powered by GitBook
On this page
  • 2024
  • 2023
  • 2022
  1. 🥵ResearchHub
  2. 🍎Security

ESORICS

2024

  • Fake or Compromised? Making Sense of Malicious Clients in Federated Learning.

  • Exploiting Internal Randomness for Privacy in Vertical Federated Learning.

  • VFLIP: A Backdoor Defense for Vertical Federated Learning via Identification and Purification.

  • Exploiting Layerwise Feature Representation Similarity For Backdoor Defence in Federated Learning.

2023

  • FLGuard: Byzantine-Robust Federated Learning via Ensemble of Contrastive Models.

  • Exploiting Internal Randomness for Privacy in Vertical Federated Learning.

2022

  • FLMJR: Improving Robustness of Federated Learning via Model Stability.

  • Long-Short History of Gradients is All You Need: Detecting Malicious and Unreliable Clients in Federated Learning.

  • Local Differential Privacy for Federated Learning in Industrial Settings.

PreviousNDSSNextACSAC

Last updated 10 months ago